PsychTests.com advancing psychology and technology



Tel 514.745.8272 fax 514.745.6242 CP Normandie PO Box 26067 I Montreal, Quebec I H3M 3E8 contact@psychtests.com

# **Psychometric Report**

# **Management Style - Revised**

### **Description:**

A 49-item inventory assessing management style.

#### **Definitions of Terms**

#### **People Orientation**

Focused on keeping employees happy/motivated/productive

#### **Product Orientation**

Focused on getting the job done

#### **Goal Orientation**

| Task Oriented:            | Vs. | Goal Oriented:                         |
|---------------------------|-----|----------------------------------------|
| Focused on each task as a |     | Sees the big Picture, has a vision for |
| separate entity           |     | the entire process/job.                |

#### **Directive Orientation**

"Boss" position Assigns work Uses reward/reprimand model

#### **Participatory Orientation**

Works "in the trenches" Involves everyone is various stages/levels of work Coaches

#### **Adaptive Orientation**

| Inflexible Orientation:        | Vs. | Adaptive                  |
|--------------------------------|-----|---------------------------|
| Won't consider new ways        |     | Bends the rules           |
| Once decision has been made,   |     | Can change their thinking |
| there is no going back on it.  |     | Open to new ideas         |
| *Might* be stuck on the Status |     |                           |
| Quo (but does not have to be)  |     |                           |

#### **Change Orientation**

| Maintaining the Status Quo<br>Believes in the status quo<br>Not willing to take risk<br>Follows the way "it has always<br>been" does not fight it.<br>Not interested in implementing<br>change | Vs. | Incite Change<br>Forward thinking<br>Not afraid of risk<br>Makes change |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------------------------------------------------------------------|
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------------------------------------------------------------------|

#### **Positive Orientation**

| Problem Mentality     | Vs. | Possibility Mentality               |
|-----------------------|-----|-------------------------------------|
| Dark cloud            |     | Sunny view, everything will be fine |
| Looks at the negative |     | "We'll figure something out"        |
| Always looking for    |     | Sees opportunity                    |
| problems/pitfalls     |     |                                     |

#### **Future Orientation**

| Reactive Orientation            | Vs. | Proactive Orientation    |
|---------------------------------|-----|--------------------------|
| Waits for things to come        | _   | Thinks ahead (organized) |
| Not looking ahead OR doesn't    |     | Motivated                |
| care about what is coming.      |     | Could be a risk taker    |
| Possibly unmotivated to take an |     |                          |
| active stance.                  |     |                          |

The test is suitable for adult and adolescent populations

#### **Reference:**

Tidman, L., Jerabek, I., St Jean, T. (2002). Management Style Test - Revised. QueenDom.com

### Sample Size: 587

### Sample Description:

The sample includes men and women, aged 6 to 100, who took the test on Queendom.com .

Number of questions: 49

# **Descriptive Statistics**

See Annex 1 for Descriptive statistics

### **Distributions for the Management Style Test**

The distribution of the scores is shown in red; the normal curve is represented by the black line. The scores are displayed on the x-axis. The y-axis corresponds to the number of respondents who fall into the relevant score range.

### Men and Women



People Orientation







**Directive Orientation** 



### **Participatory Orientation**



Adaptive Orientation



#### **Change Orientation**



**Positive Orientation** 







### Women Only



#### **Product Orientation**

**People Orientation** 





**Directive Orientation** 



#### **Participatory Orientation**



Adaptive Orientation







**Positive Orientation** 







### Men Only



**Product Orientation** 

**People Orientation** 





**Directive Orientation** 



#### **Participatory Orientation**



Adaptive Orientation







**Positive Orientation** 







### **Reliability and Internal Consistency**

### **Factor 1: Product Orientation**

Inter-Item Consistency Cronbach's Coefficient Alpha:0.649

### Split-Half Reliability

Correlation between forms: 0.494 Spearman-Brown formula: Unequal 0.668 Guttman's formula: 0.654

### Factor 2: People Orientation (19 items)

# Inter-Item Consistency

Cronbach's Coefficient Alpha: 658

### Split-Half Reliability

Correlation between forms: 0.514 Spearman-Brown formula: Unequal 0.680 Guttman's formula: 0.671

### **Factor 3: Goal Orientation**

### Inter-Item Consistency

Cronbach's Coefficient Alpha: 0.540

### Split-Half Reliability

Correlation between forms: 0.433 Spearman-Brown formula: Unequal 0.607 Guttman's formula: 0.595

### Factor 4: Directive Orientation (8 items)

Inter-Item Consistency Cronbach's Coefficient Alpha: 0.600

### **Split-Half Reliability**

Correlation between forms: 0.488 Spearman-Brown formula: Unequal 0.658 Guttman's formula: 0.651

### Factor 5: Participatory Orientation (6 items)

Inter-Item Consistency Cronbach's Coefficient Alpha: 0.742

### Split-Half Reliability

Correlation between forms: 0.562 Spearman-Brown formula: Unequal 0.721 Guttman's formula: 0.716

### Factor 6: Adaptive Orientation (6 items)

Inter-Item Consistency Cronbach's Coefficient Alpha: 570

### **Split-Half Reliability**

Correlation between forms: 0.343 Spearman-Brown formula: Unequal 0.510 Guttman's formula: 0.483

### Factor 7: Change Orientation (6 items)

Inter-Item Consistency Cronbach's Coefficient Alpha: 570

### Split-Half Reliability

Correlation between forms: 0.483 Spearman-Brown formula: Unequal 0.655 Guttman's formula: 0.640

### Factor 8: Positive Orientation (6 items)

Inter-Item Consistency Cronbach's Coefficient Alpha: 0.366

#### Split-Half Reliability

Correlation between forms: 0.333 Spearman-Brown formula: Unequal 0.499 Guttman's formula: 0.499

### Factor 9: Proactive Orientation (6 items)

### Inter-Item Consistency

Cronbach's Coefficient Alpha: 0.678

### **Split-Half Reliability**

Correlation between forms: 0.548 Spearman-Brown formula: Unequal 0.711 Guttman's formula: 0.698

# **Criterion and Construct Validity**

### 1. Relationship between being a successful manager and management style

Question #1:If you are in a management position do you feel that you are a successful manager? OPTION VALUE="na" SELECTED>I don't want to answer OPTION VALUE="1">Yes, completely OPTION VALUE="1">Yes, completely OPTION VALUE="2">Somewhat OPTION VALUE="2">Somewhat OPTION VALUE="3">Slightly OPTION VALUE="3">Slightly OPTION VALUE="3">I am not in a management position

### **Product Orientation**

No significant score differences were found among groups of subjects depending on how good of a manager they were. Neither less, the people who thought they were successful managers appear to be slightly more product oriented than the others. See Annex 2 for a table showing homogeneous subsets.

F<sub>(2,276)</sub> = 2.886 p > 0.050



#### PRUDUCT ORIENTATION AND MANAGEMENT SKILLS

### **People Orientation**

Significant score differences were found among groups of subjects depending on how good of a manager they were. The people who thought they are outstanding managers scored significantly higher than the people who though they are somewhat successful managers. No other significant differences were detected. See Annex 2 for a table showing homogeneous subsets.





#### PRUDUCT ORIENTATION AND MANAGEMENT SKILLS

**Successful Manager** 

### **Goal Orientation**

Significant score differences were found among groups of subjects depending on how good of a manager they were. The people who thought they are outstanding managers scored significantly higher than the people who though they are somewhat successful managers. No other significant differences were detected. The effects are robust. See Annex 2 for a table showing homogeneous subsets.





#### GOAL ORIENTATION AND MANAGEMENT SKILLS

**Successful Manager** 

### **Directive Orientation**

Significant score differences were found among groups of subjects depending on how good of a manager they were. The people who thought they are outstanding managers scored significantly higher than the people who though they are somewhat successful managers. No other significant differences were detected. See Annex 2 for a table showing homogeneous subsets.





### DIRECTIVE ORIENTATION AND MANAGEMENT SKILLS

Successful Manager

### **Participatory Orientation**

Significant score differences were found among groups of subjects depending on how good of a manager they were. The people who thought they are outstanding managers scored significantly higher than the people who though they are somewhat and slightly successful managers. No other significant differences were detected. The effects are robust. See Annex 2 for a table showing homogeneous subsets.





#### PARTICIPATORY ORIENTATION AND MANAGEMENT SKILLS

Successful Manager

### **Adaptive Orientation**

Significant score differences were found among groups of subjects depending on how good of a manager they were. The people who thought they are outstanding managers scored significantly higher than the people who though they are somewhat and slightly and not at all successful managers. No other significant differences were detected. The effects are robust. See Annex 2 for a table showing homogeneous subsets.



#### ADAPTIVE ORIENTATION AND MANAGEMENT SKILLS

**Successful Manager** 

### **Change Orientation**

Significant score differences were found among groups of subjects depending on how good of a manager they were. The people who thought they are outstanding managers scored significantly higher than the people who though they are somewhat successful managers. No other significant differences were detected. See Annex 2 for a table showing homogeneous subsets.





#### CHANGE ORIENTATION AND MANAGEMENT SKILLS

Successful Manager

### **Positive Orientation**

Significant score differences were found among groups of subjects depending on how good of a manager they were. The people who thought they are outstanding managers scored significantly higher than all the other groups. No other significant differences were detected. The effects are robust. See Annex 2 for a table showing homogeneous subsets.



### **Proactive Orientation**

Significant score differences were found among groups of subjects depending on how good of a sales person they were. Only the really good sales people scored significantly higher than the three other groups. No significant differences were detected between those three groups. The effects are robust. See Annex 2 for a table showing homogeneous subsets.

 $F_{(3,8694)} = 8.547$  p < 0.000



#### PROACTIVE ORIENTATIN AND MANAGEMENT SKILLS

**Successful Manager** 

# 2. Relationship between the desire to be in a management position and management style

Question #2:Would you like to be in management position (if you are not already)? OPTION VALUE="na" SELECTED>I don't want to answer OPTION VALUE="1">Yes OPTION VALUE="2">No OPTION VALUE="3">I am already in a management position

### **Product Orientation**

Some significant score differences were found among groups of subjects depending on their aspiration to be a manager. The people who do not want to be in a management position, scored lower on the product orientation than the people who are in a management position. See Annex 3 for a table showing homogeneous subsets.

F<sub>(2,276)</sub> = 2.886 p < 0.057



#### PRUDUCT ORIENTATION AND ASPIRATION

Would Like To Be In A Management Position

### **People Orientation**

Significant score differences were found among groups of subjects depending on their aspiration to be a manager. The people who would like to be in a management position scored higher on the product orientation than the people who are already in a management position. No other significant differences were detected. See Annex 3 for a table showing homogeneous subsets.





#### **PEOPLE ORIENTATION AND ASPIRATION**

Would Like To Be In A Management Position

### **Goal Orientation**

Significant score differences were found among groups of subjects depending on their aspiration to be a manager. The people who would like to be in a management position scored higher on the goal orientation than the people who are already in a management position. No other significant differences were detected. See Annex 3 for a table showing homogeneous subsets.





#### **GOAL ORIENTATION AND ASPIRATION**

Would Like To Be In A Management Position

### **Directive Orientation**

No significant score differences were found among groups of subjects depending on aspiration to be a manger See Annex 3 for a table showing homogeneous subsets.





DIRECTIVE ORIENTATION AND ASPIRATION

Would Like To Be In A Management Position

### **Participatory Orientation**

p < 0.210

F<sub>(2,276)</sub> = 1.572

No significant score differences were found among groups of subjects depending on aspiration to be a manger See Annex 3 for a table showing homogeneous subsets.



Would Like To Be In A Management Position

### **Adaptive Orientation**

No significant score differences were found among groups of subjects depending on aspiration to be a manger See Annex 3 for a table showing homogeneous subsets.

F<sub>(2,276)</sub> = 1.284 p < 0.279



ADAPTIVE ORIENTATION AND ASPIRATION

Would Like To Be In A Management Position

### **Change Orientation**

No significant score differences were found among groups of subjects depending on aspiration to be a manger See Annex 3 for a table showing homogeneous subsets.

F<sub>(2,276)</sub> = 1.235 p < 0.292



CHANGE ORIENTATION AND ASPIRATION

Would Like To Be In A Management Position

### **Positive Orientation**

No significant score differences were found among groups of subjects depending on aspiration to be a manger See Annex 3 for a table showing homogeneous subsets.

F<sub>(2,276)</sub> = 0.692 p < 0.501



#### **POSITIVE ORIENTATION AND ASPIRATION**

Would Like To Be In A Management Position

### **Proactive Orientation**

No significant score differences were found among groups of subjects depending on aspiration to be a manger See Annex 3 for a table showing homogeneous subsets.



F<sub>(2,276)</sub> = 1.715 p < 0.182

### PROACTIVE ORIENTATION AND ASPIRATION

Would Like To Be In A Management Position

#### 3. Relationship between age and management style.

Question #3:Enter your age

### **Product Orientation**

No significant score differences were found among groups of subjects depending on their age. See Annex 4 for a table showing homogeneous subsets.

F<sub>(4,288)</sub> = 0.364 p < 0.834

### **People Orientation**

No significant score differences were found among groups of subjects depending on their age. See Annex 4 for a table showing homogeneous subsets.

F<sub>(4,288)</sub> = 2.157 p < 0.074

### **Goal Orientation**

No significant score differences were found among groups of subjects depending on their age. See Annex 4 for a table showing homogeneous subsets.

F<sub>(4,288)</sub> = 1,419 p < 0.228

### **Directive Orientation**

No significant score differences were found among groups of subjects depending on their age. See Annex 4 for a table showing homogeneous subsets.

F<sub>(4,288)</sub> = 2.078 p < 0.084

### **Participatory Orientation**

No significant score differences were found among groups of subjects depending on their age. See Annex 4 for a table showing homogeneous subsets.

F<sub>(4,288)</sub> = 1.960 p < 0.101

#### **Adaptive Orientation**

No significant score differences were found among groups of subjects depending on their age. See Annex 4 for a table showing homogeneous subsets.

F<sub>(4,288)</sub> = 1.635 p < 0.166

### **Change Orientation**

No significant score differences were found among groups of subjects depending on their age. See Annex 4 for a table showing homogeneous subsets.

F<sub>(4,288)</sub> = 1.011 p < 0.402

### **Positive Orientation**

No significant score differences were found among groups of subjects depending on their age. See Annex 4 for a table showing homogeneous subsets.

F<sub>(4,288)</sub> = 1.937 p < 0.104

### **Proactive Orientation**

No significant score differences were found among groups of subjects depending on their age. See Annex 4 for a table showing homogeneous subsets.

F<sub>(4,288)</sub> = 1.216 p < 0.304

### 3. Gender differences

Some significant gender differences were detected:

1) No gender differences were detected for the product orientation score:  $t_{(284)} = -1.809$ p < 0.072Mean difference: --3.268 2) No gender differences were detected for the people orientation score:  $t_{(284)} = 1.718$ p > 0.087 Mean difference: 2.083 3) No gender differences were detected for the goal orientation score:  $t_{(284)} = 1.581$ p < 0.115 Mean difference: 2.095 4) No gender differences were detected for the directive orientation score:  $t_{(284)} = 1.828$ p < 0.069 Mean difference: 2.685 5) Women scored significantly higher than men in the participatory orientation score: Mean difference: 2.703  $t_{(284)} = 1.976$ p < 0.050 6) No gender differences were detected for the adaptive orientation score: Mean difference: 0.520  $t_{(284)} = 0.465$ p > 0.6437) No gender differences were detected for the change orientation score: Mean difference: -1.400  $t_{(284)} = -1.027$ p > 0.305 8) No gender differences were detected for the positive orientation score: Mean difference: -0.434  $t_{(284)} = -0.343$ p > 0.7329) Men scored significantly higher than women in the proactive orientation score:  $t_{(284)} = -2.163$ p > 0.031 Mean difference: -3.532

# Group Statistics for Gender Differences

|                  |        |     |       |                | Std. Error |
|------------------|--------|-----|-------|----------------|------------|
|                  | Gender | N   | Mean  | Std. Deviation | Mean       |
| Product          | Woman  | 135 | 41.47 | 15.326         | 1.319      |
| Orientation      | Man    | 151 | 44.74 | 15.189         | 1.236      |
| People           | Woman  | 135 | 67.97 | 10.398         | .895       |
| Orientation      | Man    | 151 | 65.89 | 10.085         | .821       |
| Goal Orientation | Woman  | 135 | 62.96 | 11.970         | 1.030      |
|                  | Man    | 151 | 60.86 | 10.435         | .849       |
| Directive        | Woman  | 135 | 60.03 | 12.548         | 1.080      |
| Orientation      | Man    | 151 | 57.34 | 12.269         | .998       |
| Participatory    | Woman  | 135 | 72.76 | 11.715         | 1.008      |
| Orientation      | Man    | 151 | 70.05 | 11.393         | .927       |
| Adaptive         | Woman  | 135 | 58.97 | 8.917          | .767       |
| Orientation      | Man    | 151 | 58.45 | 9.900          | .806       |
| Change           | Woman  | 135 | 58.66 | 11.068         | .953       |
| Orientation      | Man    | 151 | 60.06 | 11.884         | .967       |
| Positive         | Woman  | 135 | 55.65 | 11.568         | .996       |
| Orientation      | Man    | 151 | 56.09 | 9.866          | .803       |
| Proactive        | Woman  | 135 | 66.73 | 14.436         | 1.242      |
| Orientation      | Man    | 151 | 70.26 | 13.181         | 1.073      |

### **Group Statistics**

# Independent Samples Test for Gender Differences

#### Test

#### Independent Samples

|                              |                                |        |         | t-test f           | or Equality of     | Means                    |                               |                       |
|------------------------------|--------------------------------|--------|---------|--------------------|--------------------|--------------------------|-------------------------------|-----------------------|
|                              |                                | t      | df      | Sig.<br>(2-tailed) | Mean<br>Difference | Std. Error<br>Difference | 95% Confident<br>of the Diffe | ce Interval<br>erence |
|                              |                                |        |         |                    |                    |                          | Lower                         | Upper                 |
| Product<br>Orientation       | Equal variances<br>assumed     | -1.809 | 284     | .072               | -3.268             | 1.807                    | -6.824                        | .289                  |
|                              | Equal variances<br>not assumed | -1.808 | 279.872 | .072               | -3.268             | 1.808                    | -6.826                        | .291                  |
| People<br>Orientation        | Equal variances<br>assumed     | 1.718  | 284     | .087               | 2.083              | 1.212                    | 303                           | 4.469                 |
|                              | Equal variances<br>not assumed | 1.715  | 278.318 | .087               | 2.083              | 1.214                    | 307                           | 4.473                 |
| Goal<br>Orientation          | Equal variances<br>assumed     | 1.581  | 284     | .115               | 2.095              | 1.325                    | 513                           | 4.702                 |
|                              | Equal variances<br>not assumed | 1.569  | 267.590 | .118               | 2.095              | 1.335                    | 534                           | 4.723                 |
| Directive<br>Orientation     | Equal variances<br>assumed     | 1.828  | 284     | .069               | 2.685              | 1.469                    | 206                           | 5.577                 |
|                              | Equal variances<br>not assumed | 1.826  | 278.928 | .069               | 2.685              | 1.471                    | 210                           | 5.580                 |
| Participatory<br>Orientation | Equal variances<br>assumed     | 1.976  | 284     | .049               | 2.703              | 1.368                    | .011                          | 5.394                 |
|                              | Equal variances<br>not assumed | 1.973  | 278.524 | .049               | 2.703              | 1.370                    | .006                          | 5.399                 |
| Adaptive<br>Orientation      | Equal variances<br>assumed     | .465   | 284     | .643               | .520               | 1.119                    | -1.683                        | 2.723                 |
|                              | Equal variances<br>not assumed | .467   | 283.982 | .641               | .520               | 1.113                    | -1.670                        | 2.710                 |
| Change<br>Orientation        | Equal variances<br>assumed     | -1.027 | 284     | .305               | -1.400             | 1.363                    | -4.083                        | 1.282                 |
|                              | Equal variances<br>not assumed | -1.032 | 283.518 | .303               | -1.400             | 1.357                    | -4.072                        | 1.272                 |
| Positive<br>Orientation      | Equal variances assumed        | 343    | 284     | .732               | 434                | 1.268                    | -2.930                        | 2.061                 |
|                              | Equal variances<br>not assumed | 340    | 264.882 | .734               | 434                | 1.279                    | -2.952                        | 2.084                 |
| Proactive<br>Orientation     | Equal variances<br>assumed     | -2.163 | 284     | .031               | -3.532             | 1.633                    | -6.747                        | 318                   |
|                              | Equal variances not assumed    | -2.152 | 272.800 | .032               | -3.532             | 1.641                    | -6.764                        | 301                   |

### 4. Correlations

|                              |                     | Product              | People                | Goal                  | Directive             | Participatory         |
|------------------------------|---------------------|----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| Product                      | Pearson Correlation | Onentation           | Onentation            | Onentation            | Onentation            | Onentation            |
| Orientation                  |                     | 1                    | <mark>215(**</mark> ) | <mark>243(**)</mark>  | <mark>448(**)</mark>  | <mark>359(**)</mark>  |
|                              | Sig. (2-tailed)     |                      | .000                  | .000                  | .000                  | .000                  |
|                              | Ν                   | 293                  | 293                   | 293                   | 293                   | 293                   |
| People<br>Orientation        | Pearson Correlation | <mark>215(**)</mark> | 1                     | .560(**)              | .433(**)              | .698(**)              |
|                              | Sig. (2-tailed)     | .000                 |                       | .000                  | .000                  | .000                  |
|                              | Ν                   | 293                  | 293                   | 293                   | 293                   | 293                   |
| Goal Orientation             | Pearson Correlation | <mark>243(**)</mark> | .560(**)              | 1                     | .777(**)              | .747(**)              |
|                              | Sig. (2-tailed)     | .000                 | .000                  |                       | .000                  | .000                  |
|                              | Ν                   | 293                  | 293                   | 293                   | 293                   | 293                   |
| Directive<br>Orientation     | Pearson Correlation | <mark>448(**)</mark> | <mark>.433(**)</mark> | <mark>.777(**)</mark> | 1                     | .748(**)              |
|                              | Sig. (2-tailed)     | .000                 | .000                  | .000                  |                       | .000                  |
|                              | Ν                   | 293                  | 293                   | 293                   | 293                   | 293                   |
| Participatory<br>Orientation | Pearson Correlation | <mark>359(**)</mark> | .698(**)              | .747(**)              | .748(**)              | 1                     |
|                              | Sig. (2-tailed)     | .000                 | .000                  | .000                  | .000                  |                       |
|                              | Ν                   | 293                  | 293                   | 293                   | 293                   | 293                   |
| Adaptive<br>Orientation      | Pearson Correlation | <mark>285(**)</mark> | <mark>.497(**)</mark> | <mark>.543(**)</mark> | <mark>.476(**)</mark> | <mark>.660(**)</mark> |
|                              | Sig. (2-tailed)     | .000                 | .000                  | .000                  | .000                  | .000                  |
|                              | Ν                   | 293                  | 293                   | 293                   | 293                   | 293                   |
| Change<br>Orientation        | Pearson Correlation | 048                  | <mark>.210(**)</mark> | <mark>.380(**)</mark> | <mark>.232(**)</mark> | <mark>.325(**)</mark> |
|                              | Sig. (2-tailed)     | .416                 | .000                  | .000                  | .000                  | .000                  |
|                              | Ν                   | 293                  | 293                   | 293                   | 293                   | 293                   |
| Positive<br>Orientation      | Pearson Correlation | <mark>288(**)</mark> | <mark>.278(**)</mark> | <mark>.417(**)</mark> | <mark>.404(**)</mark> | <mark>.487(**)</mark> |
|                              | Sig. (2-tailed)     | .000                 | .000                  | .000                  | .000                  | .000                  |
|                              | Ν                   | 293                  | 293                   | 293                   | 293                   | 293                   |
| Proactive<br>Orientation     | Pearson Correlation | .038                 | <mark>.216(**)</mark> | <mark>.407(**)</mark> | <mark>.202(**)</mark> | <mark>.358(**)</mark> |
|                              | Sig. (2-tailed)     | .522                 | .000                  | .000                  | .000                  | .000                  |
|                              | Ν                   | 293                  | 293                   | 293                   | 293                   | 293                   |
| Age                          | Pearson Correlation | 026                  | 120(*)                | .073                  | .124(*)               | .074                  |
|                              | Sig. (2-tailed)     | .659                 | .040                  | .210                  | .033                  | .209                  |
|                              | Ν                   | 293                  | 293                   | 293                   | 293                   | 293                   |
| Successful<br>Manager        | Pearson Correlation | 161(*)               | .058                  | 006                   | .007                  | 006                   |
|                              | Sig. (2-tailed)     | .012                 | .371                  | .927                  | .917                  | .931                  |
|                              | Ν                   | 242                  | 242                   | 242                   | 242                   | 242                   |

#### Correlations

\*\* Correlation is significant at the 0.01 level (2-tailed).
\* Correlation is significant at the 0.05 level (2-tailed).

#### Correlations

|                              |                     | Adaptive<br>Orientation | Change<br>Orientation | Positive<br>Orientation | Proactive<br>Orientation | Age                  | Successful<br>Manager |
|------------------------------|---------------------|-------------------------|-----------------------|-------------------------|--------------------------|----------------------|-----------------------|
| Product<br>Orientation       | Pearson Correlation | <mark>285(**)</mark>    | 048                   | <mark>288(**)</mark>    | .038                     | 026                  | 161(*)                |
| onontation                   | Sig. (2-tailed)     | .000                    | .416                  | .000                    | .522                     | .659                 | .012                  |
|                              | Ν                   | 293                     | 293                   | 293                     | 293                      | 293                  | 242                   |
| People<br>Orientation        | Pearson Correlation | <mark>.497(**)</mark>   | <mark>.210(**)</mark> | <mark>.278(**)</mark>   | <mark>.216(**)</mark>    | 120(*)               | .058                  |
|                              | Sig. (2-tailed)     | .000                    | .000                  | .000                    | .000                     | .040                 | .371                  |
|                              | Ν                   | 293                     | 293                   | 293                     | 293                      | 293                  | 242                   |
| Goal<br>Orientation          | Pearson Correlation | .543(**)                | <mark>.380(**)</mark> | <mark>.417(**)</mark>   | <mark>.407(**)</mark>    | .073                 | 006                   |
|                              | Sig. (2-tailed)     | .000                    | .000                  | .000                    | .000                     | .210                 | .927                  |
|                              | Ν                   | 293                     | 293                   | 293                     | 293                      | 293                  | 242                   |
| Directive<br>Orientation     | Pearson Correlation | <mark>.476(**)</mark>   | <mark>.232(**)</mark> | <mark>.404(**)</mark>   | <mark>.202(**)</mark>    | .124(*)              | .007                  |
|                              | Sig. (2-tailed)     | .000                    | .000                  | .000                    | .000                     | .033                 | .917                  |
|                              | Ν                   | 293                     | 293                   | 293                     | 293                      | 293                  | 242                   |
| Participatory<br>Orientation | Pearson Correlation | .660(**)                | <mark>.325(**)</mark> | <mark>.487(**)</mark>   | <mark>.358(**)</mark>    | .074                 | 006                   |
|                              | Sig. (2-tailed)     | .000                    | .000                  | .000                    | .000                     | .209                 | .931                  |
|                              | Ν                   | 293                     | 293                   | 293                     | 293                      | 293                  | 242                   |
| Adaptive<br>Orientation      | Pearson Correlation | 1                       | .584(**)              | <mark>.437(**)</mark>   | <mark>.477(**)</mark>    | .023                 | 045                   |
|                              | Sig. (2-tailed)     |                         | .000                  | .000                    | .000                     | .698                 | .483                  |
|                              | Ν                   | 293                     | 293                   | 293                     | 293                      | 293                  | 242                   |
| Change<br>Orientation        | Pearson Correlation | .584(**)                | 1                     | <mark>.191(**)</mark>   | .658(**)                 | .016                 | 126                   |
|                              | Sig. (2-tailed)     | .000                    |                       | .001                    | .000                     | .791                 | .051                  |
|                              | Ν                   | 293                     | 293                   | 293                     | 293                      | 293                  | 242                   |
| Positive<br>Orientation      | Pearson Correlation | .437(**)                | <mark>.191(**)</mark> | 1                       | <mark>.251(**)</mark>    | .125(*)              | 015                   |
|                              | Sig. (2-tailed)     | .000                    | .001                  |                         | .000                     | .033                 | .811                  |
|                              | Ν                   | 293                     | 293                   | 293                     | 293                      | 293                  | 242                   |
| Proactive<br>Orientation     | Pearson Correlation | <mark>.477(**)</mark>   | .658(**)              | <mark>.251(**)</mark>   | 1                        | .001                 | 128(*)                |
|                              | Sig. (2-tailed)     | .000                    | .000                  | .000                    |                          | .987                 | .046                  |
|                              | Ν                   | 293                     | 293                   | 293                     | 293                      | 293                  | 242                   |
| Age                          | Pearson Correlation | .023                    | .016                  | .125(*)                 | .001                     | 1                    | <mark>263(**)</mark>  |
|                              | Sig. (2-tailed)     | .698                    | .791                  | .033                    | .987                     |                      | .000                  |
|                              | N                   | 293                     | 293                   | 293                     | 293                      | 293                  | 242                   |
| Successful<br>Manager        | Pearson Correlation | 045                     | 126                   | 015                     | 128(*)                   | <mark>263(**)</mark> | 1                     |
|                              | Sig. (2-tailed)     | .483                    | .051                  | .811                    | .046                     | .000                 |                       |
|                              | Ν                   | 242                     | 242                   | 242                     | 242                      | 242                  | 242                   |

\*\* Correlation is significant at the 0.01 level (2-tailed).
\* Correlation is significant at the 0.05 level (2-tailed).

### **ANNEX 1 -Descriptive Statistics**

### Women and Men

|                        |         |             |             | Statis      | lics        |               |             |             |             |             |
|------------------------|---------|-------------|-------------|-------------|-------------|---------------|-------------|-------------|-------------|-------------|
|                        |         | Product     | People      | Goal        | Directive   | Participatory | Adaptive    | Change      | Positive    | Proactive   |
|                        |         | Orientation | Orientation | Orientation | Orientation | Orientation   | Orientation | Orientation | Orientation | Orientation |
| Ν                      | Valid   | 587         | 587         | 587         | 587         | 587           | 587         | 587         | 587         | 587         |
|                        | Missing | 0           | 0           | 0           | 0           | 0             | 0           | 0           | 0           | 0           |
| Mean                   |         | 44.01       | 66.84       | 61.75       | 58.00       | 71.02         | 57.92       | 58.89       | 55.29       | 68.82       |
| Std. Error of Mean     |         | .650        | .448        | .469        | .508        | .492          | .405        | .503        | .436        | .572        |
| Median                 |         | 44.00       | 67.00       | 60.00       | 58.00       | 71.00         | 57.00       | 59.00       | 54.00       | 68.00       |
| Mode                   |         | 40          | 67          | 52          | 54          | 70            | 56          | 48          | 44          | 60          |
| Std. Deviation         |         | 15.753      | 10.857      | 11.363      | 12.310      | 11.912        | 9.817       | 12.183      | 10.564      | 13.856      |
| Variance               |         | 248.169     | 117.883     | 129.125     | 151.544     | 141.890       | 96.373      | 148.434     | 111.599     | 191.987     |
| Skewness               |         | .494        | 746         | .336        | .169        | 440           | .226        | .066        | .155        | .023        |
| Std. Error of Skewness |         | .101        | .101        | .101        | .101        | .101          | .101        | .101        | .101        | .101        |
| Kurtosis               |         | .803        | 4.858       | .500        | .307        | .875          | .044        | 063         | 423         | 251         |
| Std. Error of Kurtosis |         | .201        | .201        | .201        | .201        | .201          | .201        | .201        | .201        | .201        |
| Range                  |         | 100         | 100         | 75          | 78          | 78            | 61          | 75          | 55          | 71          |
| Minimum                |         | 0           | 0           | 25          | 22          | 22            | 31          | 14          | 30          | 29          |
| Maximum                |         | 100         | 100         | 100         | 100         | 100           | 92          | 89          | 85          | 100         |
| Percentiles            | 5       | 20.80       | 49.00       | 44.00       | 37.40       | 52.00         | 43.00       | 41.00       | 41.00       | 48.00       |
|                        | 10      | 27.00       | 55.00       | 48.00       | 42.00       | 57.00         | 44.80       | 44.00       | 43.00       | 51.00       |
|                        | 15      | 29.40       | 58.00       | 51.00       | 46.00       | 59.00         | 48.00       | 48.00       | 44.00       | 54.00       |
|                        | 20      | 31.00       | 60.00       | 52.00       | 47.00       | 61.00         | 50.00       | 48.00       | 44.00       | 57.00       |
|                        | 25      | 33.00       | 61.00       | 54.00       | 49.00       | 63.00         | 51.00       | 51.00       | 48.00       | 59.00       |
|                        | 30      | 36.00       | 62.00       | 56.00       | 52.00       | 65.00         | 53.00       | 51.00       | 48.00       | 60.00       |
|                        | 35      | 37.60       | 63.00       | 57.00       | 53.00       | 67.80         | 54.00       | 52.00       | 50.00       | 62.00       |
|                        | 40      | 40.00       | 64.20       | 58.00       | 54.00       | 69.00         | 55.00       | 54.00       | 52.00       | 65.00       |
|                        | 45      | 40.00       | 66.00       | 59.00       | 57.00       | 70.00         | 56.00       | 56.00       | 54.00       | 67.00       |
|                        | 50      | 44.00       | 67.00       | 60.00       | 58.00       | 71.00         | 57.00       | 59.00       | 54.00       | 68.00       |
|                        | 55      | 44.00       | 68.00       | 62.00       | 59.00       | 73.00         | 59.00       | 59.40       | 56.00       | 70.40       |
|                        | 60      | 47.00       | 69.00       | 64.00       | 61.60       | 74.00         | 60.00       | 61.60       | 57.00       | 71.00       |
|                        | 65      | 49.00       | 70.00       | 65.00       | 63.00       | 76.00         | 62.00       | 63.00       | 59.00       | 75.00       |
|                        | 70      | 51.00       | 72.00       | 67.00       | 64.00       | 78.00         | 63.00       | 67.00       | 61.00       | 76.00       |
|                        | 75      | 53.00       | 74.00       | 69.00       | 67.00       | 80.00         | 65.00       | 68.00       | 63.00       | 78.00       |
|                        | 80      | 56.00       | 75.00       | 70.00       | 68.00       | 81.00         | 66.00       | 70.00       | 65.00       | 81.00       |
|                        | 85      | 60.00       | 77.00       | 73.00       | 69.80       | 83.00         | 68.00       | 71.00       | 67.00       | 86.00       |
|                        | 90      | 64.00       | 80.00       | 77.00       | 73.00       | 85.00         | 69.00       | 76.00       | 70.00       | 87.00       |
|                        | 95      | 71.00       | 83.00       | 83.00       | 78.00       | 90.00         | 74.00       | 81.00       | 74.00       | 90.00       |
|                        | 97      | 76.00       | 86.36       | 85.00       | 83.00       | 92.36         | 77.00       | 81.00       | 76.00       | 95.00       |
|                        | 99      | 89.00       | 93.24       | 93.00       | 91.24       | 97.00         | 83.00       | 86.00       | 80.12       | 100.00      |

# Women Only

|                        |         |                 |             | Statis      | tics        |                 |             |             |             |             |
|------------------------|---------|-----------------|-------------|-------------|-------------|-----------------|-------------|-------------|-------------|-------------|
|                        |         | Product         | People      | Goal        | Directive   | Participatory   | Adaptive    | Change      | Positive    | Proactive   |
|                        |         | Orientation     | Orientation | Orientation | Orientation | Orientation     | Orientation | Orientation | Orientation | Orientation |
| N                      | Valid   | 159             | 159         | 159         | 159         | 159             | 159         | 159         | 159         | 159         |
|                        | Missing | 0               | 0           | 0           | 0           | 0               | 0           | 0           | 0           | 0           |
| Mean                   |         | 41.02           | 67.84       | 63.03       | 60.23       | 72.74           | 59.07       | 58.40       | 56.02       | 66.89       |
| Std. Error of Mean     |         | 1.177           | .781        | .911        | .956        | .892            | .684        | .883        | .911        | 1.121       |
| Median                 |         | 40.00           | 68.00       | 62.00       | 60.00       | 73.00           | 59.00       | 57.00       | 56.00       | 67.00       |
| Mode                   |         | 31 <sup>a</sup> | 75          | 57          | 68          | 70 <sup>a</sup> | 56          | 57          | 54          | 60          |
| Std. Deviation         |         | 14.837          | 9.852       | 11.489      | 12.058      | 11.245          | 8.627       | 11.140      | 11.487      | 14.136      |
| Variance               |         | 220.145         | 97.062      | 131.987     | 145.391     | 126.446         | 74.432      | 124.089     | 131.943     | 199.835     |
| Skewness               |         | .523            | 174         | .476        | .088        | 400             | .039        | .281        | .045        | .067        |
| Std. Error of Skewness |         | .192            | .192        | .192        | .192        | .192            | .192        | .192        | .192        | .192        |
| Kurtosis               |         | .412            | .105        | .468        | .595        | .638            | 341         | 573         | 398         | 274         |
| Std. Error of Kurtosis |         | .383            | .383        | .383        | .383        | .383            | .383        | .383        | .383        | .383        |
| Range                  |         | 78              | 53          | 65          | 73          | 66              | 42          | 51          | 55          | 68          |
| Minimum                |         | 9               | 38          | 35          | 27          | 34              | 41          | 35          | 30          | 32          |
| Maximum                |         | 87              | 91          | 100         | 100         | 100             | 83          | 86          | 85          | 100         |
| Percentiles            | 5       | 18.00           | 51.00       | 46.00       | 38.00       | 53.00           | 44.00       | 41.00       | 37.00       | 44.00       |
|                        | 10      | 22.00           | 55.00       | 49.00       | 44.00       | 57.00           | 48.00       | 44.00       | 41.00       | 49.00       |
|                        | 15      | 27.00           | 58.00       | 52.00       | 48.00       | 61.00           | 50.00       | 46.00       | 44.00       | 54.00       |
|                        | 20      | 31.00           | 60.00       | 53.00       | 51.00       | 63.00           | 51.00       | 49.00       | 44.00       | 56.00       |
|                        | 25      | 31.00           | 61.00       | 56.00       | 52.00       | 66.00           | 53.00       | 51.00       | 48.00       | 57.00       |
|                        | 30      | 31.00           | 63.00       | 57.00       | 54.00       | 68.00           | 55.00       | 51.00       | 50.00       | 59.00       |
|                        | 35      | 36.00           | 65.00       | 58.00       | 56.00       | 70.00           | 56.00       | 54.00       | 52.00       | 60.00       |
|                        | 40      | 36.00           | 66.00       | 59.00       | 57.00       | 70.00           | 56.00       | 56.00       | 54.00       | 62.00       |
|                        | 45      | 36.00           | 67.00       | 60.00       | 59.00       | 72.00           | 58.00       | 57.00       | 54.00       | 65.00       |
|                        | 50      | 40.00           | 68.00       | 62.00       | 60.00       | 73.00           | 59.00       | 57.00       | 56.00       | 67.00       |
|                        | 55      | 40.00           | 69.00       | 63.00       | 62.00       | 75.00           | 60.00       | 59.00       | 57.00       | 68.00       |
|                        | 60      | 44.00           | 70.00       | 67.00       | 64.00       | 76.00           | 62.00       | 60.00       | 59.00       | 70.00       |
|                        | 65      | 44.00           | 72.00       | 68.00       | 65.00       | 78.00           | 63.00       | 60.00       | 61.00       | 71.00       |
|                        | 70      | 49.00           | 73.00       | 69.00       | 67.00       | 79.00           | 64.00       | 63.00       | 63.00       | 75.00       |
|                        | 75      | 49.00           | 74.00       | 70.00       | 68.00       | 80.00           | 65.00       | 67.00       | 63.00       | 76.00       |
|                        | 80      | 51.00           | 75.00       | 72.00       | 69.00       | 82.00           | 67.00       | 70.00       | 65.00       | 81.00       |
|                        | 85      | 53.00           | 77.00       | 74.00       | 73.00       | 84.00           | 68.00       | 71.00       | 69.00       | 83.00       |
|                        | 90      | 60.00           | 81.00       | 78.00       | 74.00       | 85.00           | 69.00       | 76.00       | 72.00       | 86.00       |
|                        | 95      | 69.00           | 85.00       | 83.00       | 79.00       | 91.00           | 74.00       | 79.00       | 76.00       | 90.00       |
|                        | 97      | 76.00           | 87.20       | 86.60       | 81.80       | 94.00           | 75.20       | 81.00       | 76.80       | 92.00       |
|                        | 99      | 82.80           | 90.40       | 100.00      | 97.60       | 100.00          | 81.20       | 83.00       | 82.60       | 100.00      |

a. Multiple modes exist. The smallest value is shown

# Men Only

|                        |         |         |                 | Statis              | tics            |               |          |         |          |           |
|------------------------|---------|---------|-----------------|---------------------|-----------------|---------------|----------|---------|----------|-----------|
|                        |         | Product | People          | Goal<br>Orientation | Directive       | Participatory | Adaptive | Change  | Positive | Proactive |
| N                      | Valid   | 190     | 190             | 190                 | 190             | 190           | 190      | 190     | 190      | 190       |
|                        | Missing | 0       | 0               | 0                   | 0               | 0             | 0        | 0       | 0        | 0         |
| Mean                   | ·       | 44.78   | 65.86           | 60.96               | 57.47           | 70.15         | 58.04    | 59.65   | 55.33    | 69.95     |
| Std. Error of Mean     |         | 1.140   | .808            | .766                | .880            | .837          | .741     | .909    | .755     | .983      |
| Median                 |         | 44.00   | 66.00           | 60.00               | 57.00           | 70.50         | 58.00    | 59.00   | 54.00    | 70.00     |
| Mode                   |         | 40      | 61 <sup>a</sup> | 62                  | 57 <sup>a</sup> | 65            | 59       | 60      | 44       | 86        |
| Std. Deviation         |         | 15.716  | 11.142          | 10.564              | 12.135          | 11.542        | 10.212   | 12.533  | 10.409   | 13.552    |
| Variance               |         | 246.998 | 124.133         | 111.596             | 147.256         | 133.220       | 104.284  | 157.076 | 108.337  | 183.643   |
| Skewness               |         | .199    | -1.035          | .151                | .031            | 522           | .278     | 133     | .123     | 172       |
| Std. Error of Skewness |         | .176    | .176            | .176                | .176            | .176          | .176     | .176    | .176     | .176      |
| Kurtosis               |         | .651    | 6.426           | .890                | .728            | 1.714         | .288     | .363    | 519      | .056      |
| Std. Error of Kurtosis |         | .351    | .351            | .351                | .351            | .351          | .351     | .351    | .351     | .351      |
| Range                  |         | 100     | 100             | 69                  | 78              | 78            | 59       | 75      | 51       | 71        |
| Minimum                |         | 0       | 0               | 25                  | 22              | 22            | 33       | 14      | 30       | 29        |
| Maximum                |         | 100     | 100             | 94                  | 100             | 100           | 92       | 89      | 81       | 100       |
| Percentiles            | 5       | 18.00   | 48.00           | 44.00               | 35.55           | 53.55         | 41.00    | 39.10   | 40.10    | 48.00     |
|                        | 10      | 22.50   | 54.10           | 48.30               | 43.00           | 57.00         | 44.00    | 46.00   | 43.00    | 54.00     |
|                        | 15      | 31.00   | 57.00           | 52.00               | 46.00           | 59.00         | 47.00    | 48.00   | 44.00    | 57.00     |
|                        | 20      | 31.00   | 59.00           | 53.00               | 47.00           | 60.00         | 50.00    | 51.00   | 44.40    | 59.00     |
|                        | 25      | 36.00   | 60.75           | 54.00               | 49.00           | 63.00         | 51.00    | 51.00   | 48.00    | 60.00     |
|                        | 30      | 36.00   | 61.00           | 56.00               | 52.00           | 65.00         | 53.00    | 52.00   | 50.00    | 62.00     |
|                        | 35      | 40.00   | 62.00           | 57.00               | 53.00           | 65.00         | 54.00    | 54.00   | 50.00    | 65.00     |
|                        | 40      | 40.00   | 63.00           | 58.00               | 54.00           | 67.40         | 55.00    | 56.00   | 52.00    | 65.80     |
|                        | 45      | 43.90   | 64.00           | 59.00               | 56.00           | 69.00         | 56.00    | 58.90   | 54.00    | 68.00     |
|                        | 50      | 44.00   | 66.00           | 60.00               | 57.00           | 70.50         | 58.00    | 59.00   | 54.00    | 70.00     |
|                        | 55      | 44.15   | 67.00           | 62.00               | 58.05           | 72.00         | 59.00    | 60.00   | 56.00    | 71.10     |
|                        | 60      | 49.00   | 68.00           | 63.00               | 60.00           | 73.00         | 59.60    | 62.00   | 57.00    | 73.00     |
|                        | 65      | 49.30   | 69.00           | 64.00               | 62.00           | 75.00         | 62.00    | 65.00   | 59.00    | 75.00     |
|                        | 70      | 51.00   | 70.00           | 65.00               | 64.00           | 76.00         | 63.00    | 67.00   | 61.00    | 77.40     |
|                        | 75      | 53.00   | 73.00           | 67.00               | 67.00           | 78.25         | 65.00    | 68.00   | 63.00    | 78.00     |
|                        | 80      | 57.60   | 74.00           | 69.00               | 68.00           | 80.00         | 66.80    | 70.00   | 65.00    | 83.00     |
|                        | 85      | 60.70   | 76.00           | 70.00               | 69.00           | 81.00         | 69.00    | 73.00   | 67.00    | 86.00     |
|                        | 90      | 64.00   | 79.90           | 74.00               | 72.00           | 84.00         | 70.90    | 77.80   | 69.90    | 87.00     |
|                        | 95      | 69.90   | 82.45           | 79.45               | 75.90           | 89.45         | 75.45    | 81.00   | 72.90    | 90.90     |
|                        | 97      | 73.81   | 86.27           | 81.81               | 81.54           | 91.00         | 77.54    | 84.00   | 76.00    | 95.00     |
|                        | 99      | 89.99   | 95.45           | 91.27               | 91.81           | 97.27         | 89.27    | 86.27   | 80.09    | 100.00    |

a. Multiple modes exist. The smallest value is shown

### **ANNEX 2 -Homogeneous Subsets**

The following tables present the homogeneous subsets for all the management styles and being a successful manager:

#### **Product Orientation**

Tukey HSD

|                                 |     | Subset for<br>alpha =<br>.05 |
|---------------------------------|-----|------------------------------|
| Successful Manager              | Ν   | 1                            |
| Not In A Management<br>Position | 25  | 38.32                        |
| Not at All                      | 35  | 40.40                        |
| Slightly                        | 14  | 42.79                        |
| Yes, Completely                 | 85  | 43.86                        |
| Somewhat                        | 128 | 44.52                        |
| Sig.                            |     | .477                         |

Means for groups in homogeneous subsets are displayed.

a Uses Harmonic Mean Sample Size = 31.333.

b The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

#### **People Orientation**

Tukey HSD

|                                 |     | Subset for<br>alpha =<br>.05 |
|---------------------------------|-----|------------------------------|
|                                 | N   |                              |
| Successiul Manager              | IN  | 1                            |
| Slightly                        | 14  | 64.07                        |
| Somewhat                        | 128 | 64.18                        |
| Not In A Management<br>Position | 25  | 67.60                        |
| Yes, Completely                 | 85  | 68.92                        |
| Not at All                      | 35  | 69.20                        |
| Sig.                            |     | .297                         |

Means for groups in homogeneous subsets are displayed.

a Uses Harmonic Mean Sample Size = 31.333.

#### **Goal Orientation**

Tukey HSD

|                                 |     | Subset for alpha = .05 |       |
|---------------------------------|-----|------------------------|-------|
| Successful Manager              | Ν   | 1                      | 2     |
| Slightly                        | 14  | 58.50                  |       |
| Somewhat                        | 128 | 58.70                  | 58.70 |
| Not at All                      | 35  | 61.74                  | 61.74 |
| Not In A Management<br>Position | 25  | 64.60                  | 64.60 |
| Yes, Completely                 | 85  |                        | 66.06 |
| Sig.                            |     | .164                   | .054  |

Means for groups in homogeneous subsets are displayed.

a Uses Harmonic Mean Sample Size = 31.333.

b The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

#### **Directive Orientation**

Tukey HSD

|                                 |     | Subset for<br>alpha =<br>.05 |
|---------------------------------|-----|------------------------------|
| Successful Manager              | Ν   | 1                            |
| Somewhat                        | 128 | 55.77                        |
| Not at All                      | 35  | 57.71                        |
| Slightly                        | 14  | 58.14                        |
| Not In A Management<br>Position | 25  | 61.20                        |
| Yes, Completely                 | 85  | 61.94                        |
| Sig.                            |     | .255                         |

Means for groups in homogeneous subsets are displayed.

a Uses Harmonic Mean Sample Size = 31.333.

#### **Participatory Orientation**

Tukey HSD

|                                 |     | Subset for alpha = .05 |       |
|---------------------------------|-----|------------------------|-------|
| Successful Manager              | Ν   | 1                      | 2     |
| Slightly                        | 14  | 66.71                  |       |
| Somewhat                        | 128 | 67.66                  |       |
| Not at All                      | 35  | 71.46                  | 71.46 |
| Not In A Management<br>Position | 25  | 73.08                  | 73.08 |
| Yes, Completely                 | 85  |                        | 76.68 |
| Sig.                            |     | .144                   | .321  |

Means for groups in homogeneous subsets are displayed.

a Uses Harmonic Mean Sample Size = 31.333.

b The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

#### Adaptive Orientation

| Tukey HSD                       |     |                        |       |       |
|---------------------------------|-----|------------------------|-------|-------|
|                                 |     | Subset for alpha = .05 |       |       |
| Successful Manager              | Ν   | 1                      | 2     | 3     |
| Slightly                        | 14  | 53.07                  |       |       |
| Somewhat                        | 128 | 56.08                  | 56.08 |       |
| Not at All                      | 35  | 57.34                  | 57.34 | 57.34 |
| Not In A Management<br>Position | 25  |                        | 60.48 | 60.48 |
| Yes, Completely                 | 85  |                        |       | 63.14 |
| Sig.                            |     | .319                   | .289  | .077  |
|                                 |     |                        |       |       |

Means for groups in homogeneous subsets are displayed.

a Uses Harmonic Mean Sample Size = 31.333.

b The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

#### **Change Orientation**

Tukey HSD

|                                 |     | Subset for alpha = .05 |       |
|---------------------------------|-----|------------------------|-------|
| Successful Manager              | Ν   | 1                      | 2     |
| Slightly                        | 14  | 51.21                  |       |
| Not at All                      | 35  | 55.97                  |       |
| Somewhat                        | 128 | 57.67                  | 57.67 |
| Not In A Management<br>Position | 25  | 58.76                  | 58.76 |
| Yes, Completely                 | 85  |                        | 64.12 |
| Sig.                            |     | .074                   | .176  |

Means for groups in homogeneous subsets are displayed.

a Uses Harmonic Mean Sample Size = 31.333.

#### **Positive Orientation**

Tukey HSD

|                                 |     | Subset for<br>alpha =<br>.05 |
|---------------------------------|-----|------------------------------|
| <b>a (111</b>                   |     |                              |
| Successful Manager              | N   | 1                            |
| Slightly                        | 14  | 52.86                        |
| Somewhat                        | 128 | 54.02                        |
| Not In A Management<br>Position | 25  | 54.92                        |
| Not at All                      | 35  | 56.97                        |
| Yes, Completely                 | 85  | 59.52                        |
| Sig.                            |     | .091                         |

Means for groups in homogeneous subsets are displayed.

a Uses Harmonic Mean Sample Size = 31.333.

b The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

#### **Proactive Orientation**

Tukey HSD

|                                 |     | Subset for alpha = .05 |       |
|---------------------------------|-----|------------------------|-------|
| Successful Manager              | Ν   | 1                      | 2     |
| Slightly                        | 14  | 63.93                  |       |
| Somewhat                        | 128 | 65.49                  |       |
| Not at All                      | 35  | 65.54                  |       |
| Not In A Management<br>Position | 25  | 66.24                  |       |
| Yes, Completely                 | 85  |                        | 75.29 |
| Sig.                            |     | .956                   | 1.000 |

Means for groups in homogeneous subsets are displayed.

a Uses Harmonic Mean Sample Size = 31.333.

### ANNEX 3 -Homogeneous Subsets

The following tables present the homogeneous subsets for all the management styles and the aspiration.

#### **Product Orientation**

Tukey HSD

| Would Like To Be In A               |     | Subset for | alpha = .05 |
|-------------------------------------|-----|------------|-------------|
| Management Position                 | Ν   | 1          | 2           |
| No                                  | 13  | 32.54      |             |
| Yes                                 | 102 |            | 41.88       |
| Already In A<br>Management Position | 164 |            | 43.13       |
| Sig.                                |     | 1.000      | .943        |

Means for groups in homogeneous subsets are displayed.

a Uses Harmonic Mean Sample Size = 32.319.

b The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

#### **People Orientation**

Tukey HSD

|                                              |     | Subset for<br>alpha =<br>.05 |
|----------------------------------------------|-----|------------------------------|
| Would Like To Be In A<br>Management Position | Ν   | 1                            |
| Already In A<br>Management Position          | 164 | 65.47                        |
| No                                           | 13  | 66.85                        |
| Yes                                          | 102 | 69.24                        |
| Sig.                                         |     | .338                         |

Means for groups in homogeneous subsets are displayed.

a Uses Harmonic Mean Sample Size = 32.319.

b The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

#### **Goal Orientation**

Tukey HSD

|                                              |     | Subset for<br>alpha =<br>.05 |
|----------------------------------------------|-----|------------------------------|
| Would Like To Be In A<br>Management Position | Ν   | 1                            |
| Already In A<br>Management Position          | 164 | 60.39                        |
| No                                           | 13  | 62.31                        |
| Yes                                          | 102 | 64.10                        |
| Sig.                                         |     | .374                         |

Means for groups in homogeneous subsets are displayed.

a Uses Harmonic Mean Sample Size = 32.319.

#### **Directive Orientation**

Tukey HSD

|                                              |     | Subset for<br>alpha =<br>.05 |
|----------------------------------------------|-----|------------------------------|
| Would Like To Be In A<br>Management Position | Ν   | 1                            |
| Already In A<br>Management Position          | 164 | 58.37                        |
| Yes                                          | 102 | 59.64                        |
| No                                           | 13  | 62.69                        |
| Sig.                                         |     | .335                         |

Means for groups in homogeneous subsets are displayed.

a Uses Harmonic Mean Sample Size = 32.319.

b The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

#### **Participatory Orientation**

Tukey HSD

|                                              |     | Subset for<br>alpha =<br>.05 |
|----------------------------------------------|-----|------------------------------|
| Would Like To Be In A<br>Management Position | Ν   | 1                            |
| Already In A<br>Management Position          | 164 | 70.33                        |
| Yes                                          | 102 | 72.67                        |
| No                                           | 13  | 73.77                        |
| Sig.                                         |     | .460                         |

Means for groups in homogeneous subsets are displayed.

a Uses Harmonic Mean Sample Size = 32.319.

b The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

#### **Adaptive Orientation**

Tukey HSD

|                                              |     | Subset for<br>alpha =<br>.05 |
|----------------------------------------------|-----|------------------------------|
| Would Like To Be In A<br>Management Position | Ν   | 1                            |
| Already In A<br>Management Position          | 164 | 57.72                        |
| Yes                                          | 102 | 59.25                        |
| No                                           | 13  | 61.08                        |
| Sig.                                         |     | .349                         |

Means for groups in homogeneous subsets are displayed.

a Uses Harmonic Mean Sample Size = 32.319.

#### Change Orientation

Tukey HSD

|                                              |     | Subset for<br>alpha =<br>.05 |
|----------------------------------------------|-----|------------------------------|
| Would Like To Be In A<br>Management Position | N   | 1                            |
| No                                           | 13  | 57.92                        |
| Already In A<br>Management Position          | 164 | 58.12                        |
| Yes                                          | 102 | 60.45                        |
| Sig.                                         |     | .676                         |

Means for groups in homogeneous subsets are displayed.

a Uses Harmonic Mean Sample Size = 32.319.

b The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

#### **Positive Orientation**

Tukey HSD

|                                              |     | Subset for<br>alpha =<br>.05 |
|----------------------------------------------|-----|------------------------------|
| Would Like To Be In A<br>Management Position | Ν   | 1                            |
| Already In A<br>Management Position          | 164 | 55.05                        |
| Yes                                          | 102 | 56.08                        |
| No                                           | 13  | 58.15                        |
| Sig.                                         |     | .471                         |

Means for groups in homogeneous subsets are displayed.

a Uses Harmonic Mean Sample Size = 32.319.

b The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

#### **Proactive Orientation**

Tukey HSD

|                                              |     | Subset for<br>alpha =<br>.05 |
|----------------------------------------------|-----|------------------------------|
| Would Like To Be In A<br>Management Position | Ν   | 1                            |
| No                                           | 13  | 62.69                        |
| Already In A<br>Management Position          | 164 | 68.08                        |
| Yes                                          | 102 | 69.96                        |
| Sig.                                         |     | .099                         |

Means for groups in homogeneous subsets are displayed.

a Uses Harmonic Mean Sample Size = 32.319.

### **ANNEX 4-Homogeneous Subsets**

The following tables present the homogeneous subsets for all the management styles and age.

#### **Product Orientation**

Tukey HSD

|            |    | Subset for<br>alpha =<br>.05 |
|------------|----|------------------------------|
| Age Groups | Ν  | 1                            |
| 19-24      | 29 | 41.79                        |
| 40-49      | 96 | 42.50                        |
| 30-34      | 61 | 42.93                        |
| 35-39      | 57 | 43.35                        |
| 25-29      | 50 | 45.36                        |
| Sig.       |    | .769                         |

Means for groups in homogeneous subsets are displayed.

a Uses Harmonic Mean Sample Size = 50.588.

b The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

#### **People Orientation**

Tukey HSD

|            |    | Subset for alpha = .05 |       |
|------------|----|------------------------|-------|
| Age Groups | Ν  | 1                      | 2     |
| 35-39      | 57 | 64.21                  |       |
| 40-49      | 96 | 66.29                  | 66.29 |
| 25-29      | 50 | 67.50                  | 67.50 |
| 30-34      | 61 | 67.75                  | 67.75 |
| 19-24      | 29 |                        | 70.52 |
| Sig.       |    | .401                   | .225  |

Means for groups in homogeneous subsets are displayed.

a Uses Harmonic Mean Sample Size = 50.588.

#### **Goal Orientation**

| Tukey HSD  |    |                              |  |
|------------|----|------------------------------|--|
|            |    | Subset for<br>alpha =<br>.05 |  |
| Age Groups | Ν  | 1                            |  |
| 35-39      | 57 | 59.49                        |  |
| 19-24      | 29 | 60.93                        |  |
| 25-29      | 50 | 60.96                        |  |
| 30-34      | 61 | 62.21                        |  |
| 40-49      | 96 | 63.68                        |  |
| Sig.       |    | .329                         |  |

Means for groups in homogeneous subsets are displayed.

a Uses Harmonic Mean Sample Size = 50.588.

b The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

#### **Directive Orientation**

Tukey HSD

|            |    | Subset for<br>alpha =<br>.05 |
|------------|----|------------------------------|
| Age Groups | Ν  | 1                            |
| 35-39      | 57 | 56.05                        |
| 19-24      | 29 | 56.38                        |
| 25-29      | 50 | 57.20                        |
| 30-34      | 61 | 58.43                        |
| 40-49      | 96 | 61.21                        |
| Sig.       |    | .221                         |

Means for groups in homogeneous subsets are displayed. a Uses Harmonic Mean Sample Size = 50.588.

#### **Participatory Orientation**

Tukey HSD

|            |    | Subset for<br>alpha =<br>.05 |
|------------|----|------------------------------|
| Age Groups | Ν  | 1                            |
| 35-39      | 57 | 68.77                        |
| 25-29      | 50 | 68.98                        |
| 30-34      | 61 | 71.77                        |
| 19-24      | 29 | 72.24                        |
| 40-49      | 96 | 73.24                        |
| Sig.       |    | .290                         |

Means for groups in homogeneous subsets are displayed.

a Uses Harmonic Mean Sample Size = 50.588.

b The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

#### **Adaptive Orientation**

Tukey HSD

|            |    | Subset for<br>alpha =<br>.05 |
|------------|----|------------------------------|
| Age Groups | Ν  | 1                            |
| 35-39      | 57 | 56.63                        |
| 25-29      | 50 | 57.64                        |
| 30-34      | 61 | 58.07                        |
| 40-49      | 96 | 59.83                        |
| 19-24      | 29 | 60.83                        |
| Sig.       |    | .164                         |

Means for groups in homogeneous subsets are displayed.

a Uses Harmonic Mean Sample Size = 50.588.

#### Change Orientation

Tukey HSD

|            |    | Subset for<br>alpha =<br>.05 |
|------------|----|------------------------------|
| Ago Croupo | N  |                              |
| Age Groups | IN | 1                            |
| 35-39      | 57 | 57.16                        |
| 25-29      | 50 | 58.14                        |
| 19-24      | 29 | 58.93                        |
| 40-49      | 96 | 60.39                        |
| 30-34      | 61 | 60.49                        |
| Sig.       |    | .588                         |

Means for groups in homogeneous subsets are displayed.

a Uses Harmonic Mean Sample Size = 50.588.

b The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

#### **Positive Orientation**

| Tukey HSD  |    |                              |  |  |
|------------|----|------------------------------|--|--|
|            |    | Subset for<br>alpha =<br>.05 |  |  |
| Age Groups | Ν  | 1                            |  |  |
| 25-29      | 50 | 52.82                        |  |  |
| 19-24      | 29 | 55.10                        |  |  |
| 30-34      | 61 | 55.80                        |  |  |
| 35-39      | 57 | 55.84                        |  |  |
| 40-49      | 96 | 57.92                        |  |  |
| Sig.       |    | .118                         |  |  |

Means for groups in homogeneous subsets are displayed.

a Uses Harmonic Mean Sample Size = 50.588.

#### **Proactive Orientation**

Tukey HSD

|            |    | Subset for<br>alpha =<br>.05 |
|------------|----|------------------------------|
| Age Groups | Ν  | 1                            |
| 19-24      | 29 | 65.03                        |
| 35-39      | 57 | 67.26                        |
| 25-29      | 50 | 68.28                        |
| 40-49      | 96 | 68.72                        |
| 30-34      | 61 | 71.34                        |
| Sig.       |    | .152                         |

Means for groups in homogeneous subsets are displayed. a Uses Harmonic Mean Sample Size = 50.588. b The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.